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1 Isolated and Embedded Primes, Algebraic Sets, and the
Zariski Topology

1.1 Isolated and embedded primes

Last time, we showed that if R is noetherian every proper ideal is decomposable. We also
showed that if I is decomposable, then the associated primes of I are unique, independent
of the choice of decomposition.

Definition 1.1. If I C R is proper, an isolated prime of [ is a minimal element in the
set of prime ideals containing 1.

Last time, we gave a definition that depended on the decomposition. These are the
same.

Proposition 1.1. Let I C R be decomposable. A prime ideal p of R is an isolated prime
of I if and only if it is minimal (under inclusion) among the associated primes in some
primary decomposition of 1.

Proof. Let I = (), q;, where ¢; is p-primary. Suppose p D I is prime. Then p = /p D
VI =N, V& = N, pi. By the lemma from last time, p D p; for some 7. This p; may
not be minimal, but it contains a minimal prime. O

Definition 1.2. An embedded prime is an associated prime that is not isolated.

Example 1.1. In F[z,y], let I = (2y,y?) = (z,9)?> N (y) = (z,%?) N (y). The associated
primes are (z,y),(y). The only isolated prime is (y), and the only embedded prime is

(z,9).

Proposition 1.2. Let I be decomposable with p1,...,p, distinct isolated primes of I. Let
Q be the minimal primary decomposition of I: q; € Q is p; primary for 1 < i < mn. The
ideal (;_, qi is independent of the choice of Q.

Proof. The idea is to localize at S = R\ |JI; p. O



Corollary 1.1. Let p be an isolated prime of I (decomposable). Then the unique p-primary
ideal q in a minimal decomposition of I is independent of the decomposition.

Corollary 1.2. The primary ideals in a noetherian ring R are exactly the irreducible ideals.
Proof. Irreducible ideals are primary, so let p be a primary ideal. It has a decomposition

(namely itself), so it is an isolated prime of itself. So it is unique. O

1.2 Algebraic sets and the Zariski topology

Let K be an algebraically closed field. Let n > 1, and let R = K[x1,...,zy]. This is a free
algebra of K, so if we have a finite dimensional algebra over K, then it is a quotient of R
by some ideal. So studying R is important.

Definition 1.3. Let S C Klz1,...,x,]). The zero set or vanishing locus of S is
V(S)={(a1,...,an) € K" : f(a1,...,a,) =0Vf € S}.

An algebraic set in K" is a zero set of some S.

Remark 1.1. If S ={f1,..., fn}, we write V(S) =V (f1,..., fn)-

Remark 1.2. If S C T, then V(T') C V(S).

Remark 1.3. V(S) = V((9)).

Remark 1.4. V(SUT) =V (S)NnV(T).

Example 1.2. Let S = {zy,y?} C Klz,y]. 2y vanishes when z = 0 or y = 0, and y?
vanishes when y = 0. So V(S) = {(2,0) : x € K}.

Example 1.3. Look at V(z —y,22+y? — 1) C C2. Thisis V(z —y) NV (22 + 3% —1). So
r=y,222=1,andsox = +./1/2=y. So V(z —y,2> + 3> — 1) = {£(1/V2,1/v2)}.

Proposition 1.3. Algebraic sets have the following closure properties:
1. The intersection of any collection of algebraic sets is algebraic.
2. The union of any finite collection of algebraic sets is algebraic.

Proof. For the first statement, (,c; V' (S;) = V(U,c; Si)-

For the second statement, let S,7 C R with I = (S) and J = (T"). Then V(S)UV(T) =
VIHUV(J)CVUINJ). Ifae V(INJ)and a ¢ V(I), then there exists f € I such that
f(a) #0. Forany g € J, fge IJ CINJ,so (fg)(a) =0. So g(a) = 0, and since g was
arbitrary, a € V(J). O

Remark 1.5. V(@)= K", and V(R) =V (1) = @.



Definition 1.4. The Zariski topology on K™ is the topology {K™ \ V(S) : S C R},
i.e. the topology with closed sets the algebraic subsets of K. Affine n-space A% is K"
endowed with this topology.

Proposition 1.4. The Zariski topology is T1; i.e. points are closed.

Proof. Let a = (a1,...,a,) € K™. Then let m = (z1 — aq, ..., T, — a,) be a maximal ideal
of R. Then V(m) = {a}, so {a} is algebraic. O

Is the Zariski topolgoy Hausdorff?

Example 1.4. Let n = 1 and f € K|[z]; Then V(f) is finite (roots of f). The topology
on A}( is the cofinite topology (closed sets are A}( or finite sets). This is not Hausdorff.

Definition 1.5. Let Z C A%. I(Z) ={f € R: f(a) =0Va € Z} is an ideal of R.!

Remark 1.6. Let f € R with f¥ € I(Z). Then f(a)¥ =0 for all a € Z, so f(a) = 0 for
all @ € Z. This means that f € I(Z). So I(Z) = \/1(Z) is a radical ideal.

Example 1.5. Let a = (a1,...,a,) € Aj. Then I({a}) = (z1 —a1,...,zp — ay).
Next time, we will prove the following theorem.

Theorem 1.1 (weak Nullstellensatz). Every maximal ideal of R has the form (x; —
ai,...,Tn — ay) for some (ai,...,a,) € Al.

!There is not a standard name for I(Z).
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