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1 Isolated and Embedded Primes, Algebraic Sets, and the
Zariski Topology

1.1 Isolated and embedded primes

Last time, we showed that if R is noetherian every proper ideal is decomposable. We also
showed that if I is decomposable, then the associated primes of I are unique, independent
of the choice of decomposition.

Definition 1.1. If I ⊆ R is proper, an isolated prime of I is a minimal element in the
set of prime ideals containing I.

Last time, we gave a definition that depended on the decomposition. These are the
same.

Proposition 1.1. Let I ⊆ R be decomposable. A prime ideal p of R is an isolated prime
of I if and only if it is minimal (under inclusion) among the associated primes in some
primary decomposition of I.

Proof. Let I =
⋂n

i=1 qi, where qi is p-primary. Suppose p ⊇ I is prime. Then p =
√
p ⊇√

I =
⋂n

i=1

√
qi =

⋂n
i=1 pi. By the lemma from last time, p ⊇ pi for some i. This pi may

not be minimal, but it contains a minimal prime.

Definition 1.2. An embedded prime is an associated prime that is not isolated.

Example 1.1. In F [x, y], let I = (xy, y2) = (x, y)2 ∩ (y) = (x, y2) ∩ (y). The associated
primes are (x, y), (y). The only isolated prime is (y), and the only embedded prime is
(x, y).

Proposition 1.2. Let I be decomposable with p1, . . . , pn distinct isolated primes of I. Let
Q be the minimal primary decomposition of I: qi ∈ Q is pi primary for 1 ≤ i ≤ n. The
ideal

⋂n
i=1 qi is independent of the choice of Q.

Proof. The idea is to localize at S = R \
⋃n

i=1 pi.
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Corollary 1.1. Let p be an isolated prime of I (decomposable). Then the unique p-primary
ideal q in a minimal decomposition of I is independent of the decomposition.

Corollary 1.2. The primary ideals in a noetherian ring R are exactly the irreducible ideals.

Proof. Irreducible ideals are primary, so let p be a primary ideal. It has a decomposition
(namely itself), so it is an isolated prime of itself. So it is unique.

1.2 Algebraic sets and the Zariski topology

Let K be an algebraically closed field. Let n ≥ 1, and let R = K[x1, . . . , xn]. This is a free
algebra of K, so if we have a finite dimensional algebra over K, then it is a quotient of R
by some ideal. So studying R is important.

Definition 1.3. Let S ⊆ K[x1, . . . , xn]. The zero set or vanishing locus of S is

V (S) = {(a1, . . . , an) ∈ Kn : f(a1, . . . , an) = 0 ∀f ∈ S}.

An algebraic set in Kn is a zero set of some S.

Remark 1.1. If S = {f1, . . . , fn}, we write V (S) = V (f1, . . . , fn).

Remark 1.2. If S ⊆ T , then V (T ) ⊆ V (S).

Remark 1.3. V (S) = V ((S)).

Remark 1.4. V (S ∪ T ) = V (S) ∩ V (T ).

Example 1.2. Let S = {xy, y2} ⊆ K[x, y]. xy vanishes when x = 0 or y = 0, and y2

vanishes when y = 0. So V (S) = {(x, 0) : x ∈ K}.

Example 1.3. Look at V (x− y, x2 + y2 − 1) ⊆ C2. This is V (x− y)∩ V (x2 + y2 − 1). So
x = y, 2x2 = 1, and so x = ±

√
1/2 = y. So V (x− y, x2 + y2 − 1) = {±(1/

√
2, 1/
√

2)}.

Proposition 1.3. Algebraic sets have the following closure properties:

1. The intersection of any collection of algebraic sets is algebraic.

2. The union of any finite collection of algebraic sets is algebraic.

Proof. For the first statement,
⋂

i∈I V (Si) = V (
⋃

i∈I Si).
For the second statement, let S, T ⊆ R with I = (S) and J = (T ). Then V (S)∪V (T ) =

V (I) ∪ V (J) ⊆ V (I ∩ J). If a ∈ V (I ∩ J) and a /∈ V (I), then there exists f ∈ I such that
f(a) 6= 0. For any g ∈ J , fg ∈ IJ ⊆ I ∩ J , so (fg)(a) = 0. So g(a) = 0, and since g was
arbitrary, a ∈ V (J).

Remark 1.5. V (∅) = Kn, and V (R) = V (1) = ∅.
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Definition 1.4. The Zariski topology on Kn is the topology {Kn \ V (S) : S ⊆ R},
i.e. the topology with closed sets the algebraic subsets of Kn. Affine n-space An

K is Kn

endowed with this topology.

Proposition 1.4. The Zariski topology is T1; i.e. points are closed.

Proof. Let a = (a1, . . . , an) ∈ Kn. Then let m = (x1− a1, . . . , xn− an) be a maximal ideal
of R. Then V (m) = {a}, so {a} is algebraic.

Is the Zariski topolgoy Hausdorff?

Example 1.4. Let n = 1 and f ∈ K[x]¿ Then V (f) is finite (roots of f). The topology
on A1

K is the cofinite topology (closed sets are A1
K or finite sets). This is not Hausdorff.

Definition 1.5. Let Z ⊆ An
K . I(Z) = {f ∈ R : f(a) = 0 ∀a ∈ Z} is an ideal of R.1

Remark 1.6. Let f ∈ R with fk ∈ I(Z). Then f(a)k = 0 for all a ∈ Z, so f(a) = 0 for
all a ∈ Z. This means that f ∈ I(Z). So I(Z) =

√
I(Z) is a radical ideal.

Example 1.5. Let a = (a1, . . . , an) ∈ An
K . Then I({a}) = (x1 − a1, . . . , xn − an).

Next time, we will prove the following theorem.

Theorem 1.1 (weak Nullstellensatz). Every maximal ideal of R has the form (x1 −
a1, . . . , xn − an) for some (a1, . . . , an) ∈ An

K .

1There is not a standard name for I(Z).
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