Math 210C Lecture 3 Notes

Daniel Raban

April 5, 2019

1 Isolated and Embedded Primes, Algebraic Sets, and the Zariski Topology

1.1 Isolated and embedded primes

Last time, we showed that if R is noetherian every proper ideal is decomposable. We also showed that if I is decomposable, then the associated primes of I are unique, independent of the choice of decomposition.

Definition 1.1. If $I \subseteq R$ is proper, an **isolated prime** of I is a minimal element in the set of prime ideals containing I.

Last time, we gave a definition that depended on the decomposition. These are the same.

Proposition 1.1. Let $I \subseteq R$ be decomposable. A prime ideal \mathfrak{p} of R is an isolated prime of I if and only if it is minimal (under inclusion) among the associated primes in some primary decomposition of I.

Proof. Let $I = \bigcap_{i=1}^{n} \mathfrak{q}_i$, where \mathfrak{q}_i is \mathfrak{p} -primary. Suppose $\mathfrak{p} \supseteq I$ is prime. Then $\mathfrak{p} = \sqrt{\mathfrak{p}} \supseteq \sqrt{I} = \bigcap_{i=1}^{n} \sqrt{\mathfrak{q}_i} = \bigcap_{i=1}^{n} \mathfrak{p}_i$. By the lemma from last time, $\mathfrak{p} \supseteq \mathfrak{p}_i$ for some *i*. This \mathfrak{p}_i may not be minimal, but it contains a minimal prime.

Definition 1.2. An embedded prime is an associated prime that is not isolated.

Example 1.1. In F[x, y], let $I = (xy, y^2) = (x, y)^2 \cap (y) = (x, y^2) \cap (y)$. The associated primes are (x, y), (y). The only isolated prime is (y), and the only embedded prime is (x, y).

Proposition 1.2. Let I be decomposable with $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$ distinct isolated primes of I. Let Q be the minimal primary decomposition of I: $\mathfrak{q}_i \in Q$ is \mathfrak{p}_i primary for $1 \leq i \leq n$. The ideal $\bigcap_{i=1}^n \mathfrak{q}_i$ is independent of the choice of Q.

Proof. The idea is to localize at $S = R \setminus \bigcup_{i=1}^{n} \mathfrak{p}_i$.

Corollary 1.1. Let \mathfrak{p} be an isolated prime of I (decomposable). Then the unique \mathfrak{p} -primary ideal \mathfrak{q} in a minimal decomposition of I is independent of the decomposition.

Corollary 1.2. The primary ideals in a noetherian ring R are exactly the irreducible ideals.

Proof. Irreducible ideals are primary, so let \mathfrak{p} be a primary ideal. It has a decomposition (namely itself), so it is an isolated prime of itself. So it is unique.

1.2 Algebraic sets and the Zariski topology

Let K be an algebraically closed field. Let $n \ge 1$, and let $R = K[x_1, \ldots, x_n]$. This is a free algebra of K, so if we have a finite dimensional algebra over K, then it is a quotient of R by some ideal. So studying R is important.

Definition 1.3. Let $S \subseteq K[x_1, \ldots, x_n]$. The zero set or vanishing locus of S is

$$V(S) = \{(a_1, \dots, a_n) \in K^n : f(a_1, \dots, a_n) = 0 \,\forall f \in S\}.$$

An algebraic set in K^n is a zero set of some S.

Remark 1.1. If $S = \{f_1, ..., f_n\}$, we write $V(S) = V(f_1, ..., f_n)$.

Remark 1.2. If $S \subseteq T$, then $V(T) \subseteq V(S)$.

Remark 1.3. V(S) = V((S)).

Remark 1.4. $V(S \cup T) = V(S) \cap V(T)$.

Example 1.2. Let $S = \{xy, y^2\} \subseteq K[x, y]$. xy vanishes when x = 0 or y = 0, and y^2 vanishes when y = 0. So $V(S) = \{(x, 0) : x \in K\}$.

Example 1.3. Look at $V(x-y, x^2+y^2-1) \subseteq \mathbb{C}^2$. This is $V(x-y) \cap V(x^2+y^2-1)$. So $x = y, 2x^2 = 1$, and so $x = \pm \sqrt{1/2} = y$. So $V(x-y, x^2+y^2-1) = \{\pm (1/\sqrt{2}, 1/\sqrt{2})\}$.

Proposition 1.3. Algebraic sets have the following closure properties:

1. The intersection of any collection of algebraic sets is algebraic.

2. The union of any finite collection of algebraic sets is algebraic.

Proof. For the first statement, $\bigcap_{i \in I} V(S_i) = V(\bigcup_{i \in I} S_i)$.

For the second statement, let $S, T \subseteq R$ with I = (S) and J = (T). Then $V(S) \cup V(T) = V(I) \cup V(J) \subseteq V(I \cap J)$. If $a \in V(I \cap J)$ and $a \notin V(I)$, then there exists $f \in I$ such that $f(a) \neq 0$. For any $g \in J$, $fg \in IJ \subseteq I \cap J$, so (fg)(a) = 0. So g(a) = 0, and since g was arbitrary, $a \in V(J)$.

Remark 1.5. $V(\emptyset) = K^n$, and $V(R) = V(1) = \emptyset$.

Definition 1.4. The **Zariski topology** on K^n is the topology $\{K^n \setminus V(S) : S \subseteq R\}$, i.e. the topology with closed sets the algebraic subsets of K^n . Affine *n*-space \mathbb{A}^n_K is K^n endowed with this topology.

Proposition 1.4. The Zariski topology is T_1 ; i.e. points are closed.

Proof. Let $a = (a_1, \ldots, a_n) \in K^n$. Then let $\mathfrak{m} = (x_1 - a_1, \ldots, x_n - a_n)$ be a maximal ideal of R. Then $V(\mathfrak{m}) = \{a\}$, so $\{a\}$ is algebraic.

Is the Zariski topolgoy Hausdorff?

Example 1.4. Let n = 1 and $f \in K[x]_{i}$ Then V(f) is finite (roots of f). The topology on \mathbb{A}^{1}_{K} is the cofinite topology (closed sets are \mathbb{A}^{1}_{K} or finite sets). This is not Hausdorff.

Definition 1.5. Let $Z \subseteq \mathbb{A}_{K}^{n}$. $I(Z) = \{f \in R : f(a) = 0 \ \forall a \in Z\}$ is an ideal of R^{1} .

Remark 1.6. Let $f \in R$ with $f^k \in I(Z)$. Then $f(a)^k = 0$ for all $a \in Z$, so f(a) = 0 for all $a \in Z$. This means that $f \in I(Z)$. So $I(Z) = \sqrt{I(Z)}$ is a radical ideal.

Example 1.5. Let $a = (a_1, \ldots, a_n) \in \mathbb{A}_K^n$. Then $I(\{a\}) = (x_1 - a_1, \ldots, x_n - a_n)$.

Next time, we will prove the following theorem.

Theorem 1.1 (weak Nullstellensatz). Every maximal ideal of R has the form $(x_1 - a_1, \ldots, x_n - a_n)$ for some $(a_1, \ldots, a_n) \in \mathbb{A}_K^n$.

¹There is not a standard name for I(Z).